(101) plane and [010].

$$
\begin{aligned}
& l=\cos \frac{\pi}{4}[\cos \theta-\sin \theta \sin \phi] \\
& m=\sin \theta \cos \phi \\
& n=\cos \frac{\pi}{4}[\cos \theta+\sin \theta \sin \phi]
\end{aligned}
$$

Graphs G, H, and I display the variation of the elastic constants of silver in the neighborhood of a [III] pole. θ is the angle between the direction of propagation and [111] , and \varnothing is the angle between the projection of the direction of propagation on the

$$
\text { (111) plane and }[112] \text {. }
$$

$$
\begin{aligned}
& l=\frac{\cos \theta}{\sqrt{3}}-\frac{\sin \theta \cos \phi}{\sqrt{6}}+\frac{\sin \theta \sin \phi}{\sqrt{2}} \\
& m=\frac{\cos \theta}{\sqrt{3}}-\frac{\sin \theta \cos \phi}{\sqrt{6}}-\frac{\sin \theta \sin \phi}{\sqrt{2}} \\
& n=\frac{\cos \theta}{\sqrt{3}}+\frac{2 \sin \theta \cos \phi}{\sqrt{6}}
\end{aligned}
$$

The numerical values from which the graphs were plotted were obtained with a Burroughs '220' computer. The programing of the problem was coded so the values of $C_{I \prime}, C^{\prime}$, and C may easily be changed and the process repeated with minimum effort for cubic materials other than silver.

